Complex structures on quaternionic manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Hypercomplex Structures Associated to Quaternionic Manifolds Hypercomplex Structures Associated to Quaternionic Manifolds

If M is a quaternionic manifold and P is an S 1-instanton over M , then Joyce constructed a hypercomplex manifold we call P (M) over M. These hypercomplex manifolds admit a U(2)-action of a special type permuting the complex structures. We show that up to double covers, all such hypercomplex manifolds arise in this way. Examples, including that of a hypercomplex structure on SU(3), show the nec...

متن کامل

Fano Manifolds, Contact Structures, and Quaternionic Geometry

Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-1 holomorphic sub-bundle D ⊂ TZ which is maximally non-integrable. If Z admits a Kähler-Einstein metric of positive scalar curvature, we show that it is the Salamon twistor space of a quaternion-Kähler manifold (M, g). If Z also admits a second complex contact structure D̃ 6= D, then Z = C...

متن کامل

A Dolbeault-type Double Complex on Quaternionic Manifolds

It has long been known that differential forms on a complex manifold M2n can be decomposed under the action of the complex structure to give the Dolbeault complex. This paper presents an analogous double complex for a quaternionic manifold M4n using the fact that its cotangent space T ∗ mM is isomorphic to the quaternionic vector space H. This defines an action of the group Sp(1) of unit quater...

متن کامل

Quaternionic Dolbeault complex and vanishing theorems on hyperkähler manifolds

Let (M, I, J,K) be a hyperkähler manifold, dimH M = n, and L a non-trivial holomorphic line bundle on (M, I). Using the quaternionic Dolbeault complex, we prove the following vanishing theorem for holomorphic cohomology of L. If c1(L) lies in the closure K̂ of the dual Kähler cone, then H(L) = 0 for i > n. If c1(L) lies in the opposite cone −K̂, then H(L) = 0 for i < n. Finally, if c1(L) is neith...

متن کامل

Tetraplectic Structures, Tri-moment Maps, and Quaternionic Flag Manifolds

The purpose of this note is to define a tri-moment map for certain manifolds with an Sp(1)-action. We show how this map can be used ro reduce such manifolds. The images of such maps for quaternionic flag manifolds, which are defined using the Dieudonné determinant, resemble the polytopes from the complex case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 1994

ISSN: 0926-2245

DOI: 10.1016/0926-2245(94)00012-3